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PREFACE

Thispublicationis acollectionof thepresentations given at the NASA Computational
Fluid Dynamics (CFD) Conference held at NASA Ames Research Center, Moffett Field,
California, March 7-9, 1989. The objectives of the conference were to disseminate CFD

research results to industry and university CFD researchers, to promote synergy among
NASA CFD researchers, and to permit feedback from researchers outside NASA on

issues pacing the discipline of CFD. The focus of the conference was on the application
of CFD technology but also included fundamental activities. The conference was

sponsored by the Aerodynamics Division, Office of Aeronautics and Space Technology
(OAST), NASA Headquarters, Washington, DC 20546.

The conference consisted of twelve sessions of papers representative of CFD research

conducted within NASA and three non-NASA panel sessions. For each panel session, the

panel membership consisted of industry and university CFD researchers. A summary of

the comments made during the panel sessions have been included in this publication.

The conference proceedings are published in two volumes. Volume I contains the papers
presented in Sessions I-VI; Volume 2 contains those given in Sessions VII-XII. Each
volume contains the same front matter, and each contains a list of attendees as an
appendix.
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NASA CFD Conference
NASA Ames Research Center

March 7-9, 1989

Panel Sessions Summary

The NASA CFD Conference was held at Ames Research Center on March 7-9,
1989. To conclude each day's presentations, a panel session with participation
from the audience furnished a great deal of excellent feedback from the industry
and academic communities. During the conference it was evident that the panel
members proffered comments only after having spent considerable time in
preparing them.

The members of the panel sessions are listed below:

March 7 P. Rubbert - Boeing Commercial Airplanes
R. Melnik - Grumman Aerospace Corporation
D. Whitfield - Mississippi State University

March 8 I. Bhateley - General Dynamics - Fort Worth Division

R. Agarwal - McDonnell Douglas Research Laboratories
R. MacCormack - Stanford University

March 9 V. Shankar - Rockwell International Science Center

J. Carter - United Technologies Research Center
A. Jameson - Princeton University

The crucial comments from the three panel sessions have been combined and are
summarized as follows:

- NASA's CFD program is now too heavily focused on applications: program
balance has swung from fundamentals (1970's) to applications (1980's)

- Three critical "needs" emerged:

(1) More algorithm research is needed; especially for Navier-Stokes

solvers with unstructured grids

(2) More research is required on geometric modelling; need rapid,
accurate, and effective surface definition techniques

(3) More research is needed on grid generation methods with the focus
on speed, efficiency, and grid quality to reduce set up time and
complexity

- Developers of CFD need to understand the needs of the users; designers of
aerospace vehicles have requirements that are different than the CFD
researchers perceptions

Industry needs more reliable and cost effective CFD tools
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Additional detail comments from the three panel sessions are listed below:

- CFD has matured during the last decade and is being used to solve real
problems; however, industry lacks confidence in Navier-Stokes solutions

- Industry needs codes that have been validated to increase confidence in
CFD technology

- Improved communality between codes would increase usability; standards
are needed

- Improved data storage, networking, data transfer, and graphics required to
assimilate information provided by CFD

- Improved turbulence modeling for separated flows

- Accurate prediction of drag for complete powered aerospace vehicles

- Develop multidisciplinary CFD technology with optimization capability

- NASA must maintain focus on technology development and high risk
research

- Technology transfer is not complete until design engineers are using CFD
codes successfully

- Industry needs NASA to improve CFD technology for codes simpler than
Navier-Stokes solvers

- NAS program has been extremely helpful to industry in transferring CFD
technology

- Industry needs to be more aggressive in their use of CFD

- Improved understanding of CFD by design engineers required; cooperative
programs or workshops were suggested to bring CFD researchers and
designers together

- Design cycle time needs to be reduced with CFD; codes must be cost
effective, reliable, and useable, and robust to work at flight Reynolds
Numbers

- Improved coordination/reduced overlap of CFD applications between NASA
centers
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N91-10869

A COMPARATIVE STUDY OF NAVIER-STOKES CODES
FOR HIGH-SPEED FLOWS

David H. Rudy, James L. Thomas, Ajay Kumar, Peter Gnoffo

NASA Langley Research Center

and

Sukamar R. Chakravarthy
Rockwell International Science Center

A comparative study has been made with four different codes for solving the compressible

Navier-Stokes equations using three different test problems. The first of these cases was hypersonic

flow through the P8 inlet, which represents inlet configurations typical of a hypersonic airbreathing

vehicle. The free-stream Math number in this case was 7.4. This 2-D inlet was designed to provide
an internal compression ratio of 8. Initial calculations were made using two state-of-the-art finite-

volume upwind codes, CFL3D and USA-PG2, as well as NASCRIN, a code which uses the unsplit
finite-difference technique of MacCormack. All of these codes used the same algebraic eddy-viscosity

turbulence model. In the experiment, the cowl lip was slightly blunted; however, for the computations,

a sharp cowl leading edge was used to simplify the construction of the grid. Although the overall
features of the inlet flow field were predicted reasonably well, discrepancies between the computed and

experimental profiles of pitot pressure and total temperature were found for all of the codes. Calcula-

tions were then made with the two finite-volume upwind codes using a patched-grid approach which
allowed the use of a blunt cowl tip. This produced a more accurate location for the cowl leading-edge
shock and thus an improvement in the location of the resultant shock reflections within the inlet.

The second test problem was the supersonic (Mach 3.0) flow in a three-dimensional comer

formed by the intersection of two wedges with equal wedge angles of 9.48 degrees. The flow in such
a comer is representative of the flow in the comers of a scramjet inlet. Calculations were made for

both laminar and turbulent flow and compared with experimental data. The three-dimensional versions

of the three codes used for the inlet study (CFL3D, USA-PG3, and SCRAMIN, respectively) were

used for this case. For the laminar comer flow, a fourth code, LAURA, which also uses recently-
developed upwind technology, was also utilized. It was found that the complex flow structure was

qualitatively predicted by all of the codes. Furthermore, with a sufficiently-refined grid, all four codes
gave identical results for the laminar case.

The final test case is the two-dimensional hypersonic flow over a compression ramp. In this

case, the flow is laminar with a free-stream Math number of 14.1. In the experiment, the ramp angle
was varied to change the strength of the ramp shock and the extent of the viseons-inviscid interaction.

Calculations have been made for the 24-degree ramp configuration which produces a large separated-

flow region that extends upstream of the comer. All of the codes predicted the strong-interaction struc-

ture observed experimentally. However, a wide variation in the predicted extent of separation was
found for the grid that was used.
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N91-10870

MODELING OF HIGH SPEED CHEMICALLY REACTING FLOW-FIELDS

J. P. Drummond, M. H. Carpenter* and H. Kamath*

NASA Langley Research Center

Hampton, VA 23665

ABSTRACT

The SPARK3D and SPARK3D-PNS computer programs have been developed to model

3-D supersonic, chemically reacting flow-fields. The SPARK3D code is a full Navier-Stokes

solver, and is suitable for use in scramjet combnstors and other regions where recirculation

may be present. The SPARK3D-PNS is a parabolized Navier-Stokes solver and provides

an efficient means of calculating steady-state combustor far-fields and nozzles. Each code

has a generalized chemistry package, making modeling of any chemically reacting flow

possible.

Research activities by the Langley group range from addressing fundamental theoretical

issues to simulating problems of practical importance. Algorithmic development includes

work on higher order and upwind spatial difference schemes. Direct numerical simulations

employ these algorithms to address the fundamental issues of flow stability and transition,

and the chemical reaction of supersonic mixing layers and jets. It is believed that this

work will lend greater insight into phenomenological model development for simulating

supersonic chemically reacting flows in practical combustors. Currently, the SPARK3D and

SPARK3D-PNS codes are used to study problems of engineering interest, including various

injector designs and 3-D combustor-nozzle configurations. Examples, which demonstrate

the capabilities of each code are presented.

* Analytical Services and Materials, Inc.
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SPARK3D

REARWARD STEP COMPARISON

Mach= 2.05

101 x 41 x 25 GRID

Qr = 0.39

JET PENETRATION IN X-Z PLANE AT Y - Y_

o Experimental data at approximately 1 percent.

- Computed mass percent contours.

o-!7_o.,7o.o,71
o oooOOOOoo_°_

_////_ _ I
" 0._0._0._

JET SPREAD IN X-Y PLANE AT Z -- D
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EXPERIMENTAL COMPARISON

Jet Penetration

61 x 41 x 25 GRID

Qr - 0.39

• 7700y
_ 0 0 0 0 0 O O O D O 0 0 0

Qr - 0.78

7

Qr = 1.13

o_1o7oo?
_ A A f_lL _
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EXPERIMENTAL COMPARISON

Jet Penetration

61 x 41 x 25 GRID

Qr - 0.39

77oo?
0.5

Q r - 0.78 °ZA °'7_

..... _ -000°°_

C o.5 0.3

Qr = 1.13

o_7o,7oo?

_ A P, 0 0__'r _ .
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REARWARD STEP COMPARISON

Jet Spread

61 x 41 x 25 GRID

Qr - 0.39

Qr - 0.78

-y o o:7oo,y

Qr = 1.13
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N91-10871

Three-Dimensional Calculation of Supersonic
Reacting Flows Using an LU Scheme

Sheng-Tao Yu
Y-L Peter Tsai
Jian-Shun Shuen

Sverdrup Technology, Inc.
NASA Lewis Research Center
Cleveland, Ohio

ABSTRACT

A new three-dimensional numerical program incorporated with

comprehensive real gas property models has been developed to sim-

ulate supersonic reacting flows. The code employs an implicit finite

volume, Lower-Upper (LU) time-marching method to solve the com-

plete Navier-Stokes and species equations in a fully-coupled and very

efficient manner. A chemistry model with nine species and eighteen

reaction steps are adopted in the program to represent the chemical

reaction of H2 and air. To demonstrate the capability of the program,

flow fields of underexpanded hydrogen jets transversely injected into

supersonic air stream inside the combustors of scramjets are calcu-

lated. Results clearly depict the flow characteristics, including the

shock structure, separated flow regions around the injector, and the

distribution of the combustion products.
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ANALYSIS

• 3D Navier-Stokes and Ns-1 species equations.

• Brabbs' finite rate chemistry model.

- 9 species: H2, H, OH, H20, O, 02, H02, H202, and N2.

- 18 reaction steps.

• Implicit treatment of source terms in species equations.

• No source term in energy equation for either exothermic or

endothermic reactions.

• Temperature and pressure are calculated iteratively from the

following equations:

N8

1 2

i=l

hi = h°yi + CpidT

No Yi

i=1
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NUMERICAL SCHEME

• Time-marching LU scheme.

• Implicit treatment of source terms.

0 0 0
OQ + (E '_ + A'_AQ) + (F" + B'_AQ) + (G'_ + C'_AQ)

OF: OC_ H_ TÈz_QOE_ +_+_+ +
- ax Oy Oz

OE OF OG T- OH

A=-_, B'--_, C--O-- _, c_Q

A=A++A -

B=B++B -

C=C++C -

A + = 0.5(A + _aI)

A- : 0.5(A - "laI)

B + = 0.5(B + ._BI)

B- : 0.5(B- _. I)

c + = o.5(c + _cI)

c- = 0.5(6 - _c1)

_A >--max(l,\AI)

-_. >_max(I),,I)

_c > max(IAcl)

[I+ At(D;A + + D+A- + n_ B+ + D+B- + D-_C+ + D+C- -T)] AQ

= AtRHS

OE,_ OF ,_ OC '_ OE'_ OF: OG _. H a

RHS- c_x Oy Oz + O--f-+ O-Y + 0--_ +
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NUMERICAL SCHEME

• Two operators for 3D calculation.

• Operation count comparable to explicit schemes.

N - AtT_,j - --

= AtRHS

NAQijk - AtTiik AQijk +

At

Ax (Ai+lJ'kAQi+l'Y'k - A+-l'Y'kAQi-l'Y'k) +

At

Ay (BJ'i+l,kAQi'i+l'k - B+ ,k) +,,j- 1,k AQi,j- 1

At

Az (Ci"J'k+lAOi'J'k+l - Ci+,,y,k-lAQi,j,k-1)

= AtRHS

At A+ At B+ At C +
N- I + _ ( ,,i,k - A_i,k) + -_y ( {,y,k -- Bi, j,k) + _ ( {,y,k --C_,d,k)

[ At /,t ]N +__ zAt(A__+,j,k) + -_y (B_-j+l'k) + Azz (CS+,.k) N-'

At (a+l,j,k) At At C+ ]Ax my (B+j-l'k) ----Az (i,j,k-1) iO

At At At )N = 1 + _x"lA + _yy?B + _zYC+ I
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PROGRAM VECTORIZATION

• LHS can be vectorized on planes normal to the sweeping direc-
tion.

Computational Domain

k

I

I
I
I
I
I

A

i-l,j,k_
i,j--1, k

i,3",k - 1

i, 3",k

i,j,k

i + j + k = constant

i,j,k+l

_ i,jl +l,k

"i+l,j,k,

Lower-Sweep Upper-Sweep
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CONVERGENCE HISTORY

• Coarse grid (30x25x30)

?

3

09

-6

too ioo ,oLoo ,loo __,____ _o--_r_---Woo
No. of Zterations

• Present calculation:

- Residuals reduced by 4 orders of magnitude.

- Single injection case: (61x39x43) 8 MW, 5 hrs on Cray 2.

- Dual Injection case: (81x39x43) ll MW, 6 hrs on Cray 2.
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GEOMETRY AND FLOW CONDITION

MFS = 2.07

pO = 310 kPa
FS

,o = 298 K
qFS

_anded Jet

Mj = I

1 J/_PFS FS_t = -_pj u 2/1- u2
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Mach Number

.l

.4

x= 1.16cm

x=0.615cm

x=1.61cm

x=2.19cm

TeMperature

1500

1750

500
250
000

1500

x=2.19cm

x=1.61cm

x=l.16cm

x=O.615cm
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H2

0.I

ol i
0.7

0.I 0.9

m x=O. 615cm

/_ x=l. 61cm

i x=2.19cm

H20

,,,,/_ 0.02
0 02
O. 22 O. 22

0.02

O. .22
.I

O.

x=l. 16cm

x=O.615cm

x=1.61cm

x=2.19cm
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COLORILLUSTRATIONS

Progress in Computing
Nozzle/Plume Flow Fields

Stephen M. Ruffin
NASA Ames Research Center, Moffett Field, CA

Ethiraj Venkatapathy
Eloret Institute, Sunnyvale, CA

William J. Feiereisen
NASA Ames Research Center, Moffett Field, CA

Seung-Ho Lee
Eloret Institute, Sunnyvale, CA

Abstract

The long-term goal of this work is to develop the capability to predict

chemically-reacting, multi-stream nozzle and plume flow fields. Two basic

Navier-Stokes solvers, including the widely used F-3D code, are upgraded

to include several upwind difference schemes and portable chemistry packages.

Current computational capabilities for solving eqilibrium single-stream and

multi-stream, frozen gas and finite rate chemistry problems are described.

A variety of complex nozzle and plume flows have been computed. Solutions

presented herein include axisymmetric plume flow for ideal and equilibrium air,

3-D NASP nozzle/afterbody flow, and an internal nozzle calculation comparing

various finite-rate chemistry packages.
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N91-10873

APPLICATION OF CFD CODES FOR THE SIMULATION OF

SCRAMJET COMBUSTOR P_OWFIELDS

Tawit Chitsomboom

NASA Langley Research Center/Vigyan Research Associates, Inc.

Hampton, Virginia 23665-5225

and

G. Burton Northam

NASA Langley Research Center

Hampton, Virginia 23665-5225

Office of Aeronautics and Space Technology (OAST)

NASA Computational Fluid Dynamics Conference

Mountain View, California

March 7-9, 1989

ABSTRACT

An overview of CFD activities in the Hypersonic Propulsion Branch is

given. Elliptic and PNS codes that are being used for the simulation of

hydrogen-air combusting flowfields for scramjet applications are discussed.

Results of the computer codes are shown in comparison with those of the

experiments where applicable. Two classes of experiments will be presented:

(a) parallel injection of hydrogen into vitiated supersonic air flow; and (b)

normal injection of hydrogen into supersonic crossflow of vitiated air.
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SPACE SHUTTLE
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Luke A. Schutzenhofer

Chief, Computational Fluid Dynamics Branch

NASA Marshall Space Flight Center

IIIIECEDi_.G PAGE BLANK NOT FILMED





N91-10875

NUMERICAL AERODYNAMIC SIMULATION OF THE
SPACE SHUTTLE ASCENT ENVIRONMENT

J.P. Slotnick

Lockheed Engineering and 5ciences Company, Houston, TX

, F.W. Martin. Jr.
NASA Lyndon B. Johnson Space Center, Houston, TX

in collaboration with the

NASA Ames Space Shuttle Flow Simulation Group
P.G. Buning, I.T. Chiu, R.L. Meakin, S. Obayashi, Y.M. Rizk

S. Ben-Shmuel, J.L. Steger, and M. Yarrow
NASA Ames Research Center, Moffett Field, CA

ABSTRACT

After the STS 51-L accident, an extensive review of the Space Shuttle Orbiter's

ascent "aerodynamic loads uncovered several questionable areas that required fur-
ther analysis. The insight gained by comparing the Shuttle ascent CFD numerical

simulations, obtained by the NASA Ames Space Shuttle Flow Simulation Group
led by Dr. J.L. Steger, to the current IVBC-3 aerodynamic loads database was

instrumental in resolving uncertainties on the Orbiter payload bay doors and fuse-

lage. Initial confidence in the numerical simulations was gained by comparing them

with the limited flight data that had been obtained during the Orbiter Flight Test

(OFT) program. Current CFD results exist for Math numbers 0.6, 0.9, 1.05, 1.55,

2.0, and 2.5. Since the pre STS-1 wind tunnel test program (IA-105) often yields
considerable differences when compared to STS-5 flight data, the Moo=I.05 tran-

sonic case is the most investigated. The IA308 mated-vehicle hot gas plume wind

tunnel test, recently completed at AEDC 16T (transonic) and Lewis (hypersonic),

is also used to compare with the computation where applicable.
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N91-10876

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF SPACE SHUTTLE MAIN

PROPULSION FEED LINE 17-INCH DISCONNECT VALVES

Max Kandula* and Daniel Pearce**

Lockheed Engineering and Sciences Company
Houston,Texas

ABSTRACT

A steady incompressible three-dimensional (3-D) viscous flow
analysis has been conducted for the Space Shuttle Main

Propulsion External Tank (ET)/Orbiter (ORB) propellant feed line

quick separable 17-1nch disconnect flapper valves for liquid

oxygen (LO2) and liquid hydrogen (LH2). The main objectives of
the analyfs were to predict and correlate the hydrodynamic
stability of the flappers and pressure drop with available water
test data.

Computational Fluid Dynamics (CFD) computer codes were procured
at no cost from the public domain, and were modified and extended

to carry out the disconnect flow analysis. The grid generator

codes SVTGD3D and INGRID, developed by Sverdrup Technology Inc.,
were obtained from Arnold Air Force Station, Tennessee. NASA

Ames Research Center supplied the flow solution code INS3D, and

the color graphics code PLOT3D. A driver routine was developed
to automate the grid generation process. Components such as

pipes, elbows and flappers can be generated with simple commands,
and flapper angles can be varied easily. The flow solver INS3D

code was modified to treat interior flappers, and other
interfacing routines were developed, which include a turbulence

model, a force/moment routine, a time-step routine, and initial

and boundary conditions. In particular, an under-relaxation

scheme was implemented to enhance the solution stability.

Major physical assumptions and simplifications made in the

analysis include the neglect of linkages (drive/follower arms),
slightly reduced flapper diameter, and smooth solid surfaces. A

grid size of 54x21x25 was employed for both the LO 2 and LH.2
units. Mixing length theory applied to turbulent shear flow In

pipes formed the basis for the simple turbulence model.

Results of the analysis are presented for LO 2 and LH 2
disconnects. The predicted stop loads, hydrodynami6 stabilit9

boundaries of the ET and orbiter flappers, and pressure drop
across the valve compare well with the water test data, covering

a tube Reynolds number of 3.5E06 for LO 2 unit and 2.4E06 for LH 2
unit. The ability to predict the valve performance and flappe_

stability over a wide range of flow rates and flapper angle
combinations demonstrates the validity of the CFD model.

* Advanced Systems Engineering Specialist
** Engineer
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Analysis of the SSME HPOTP Bearing Inlet Cavity

P. McConnaughey, NASA/MSFC

Analysis of the flow in the Space Shuttle Main Engine (SSME)

high pressure oxygen turbopump (HPOTP) bearing #i inlet cavity

has been completed In support of return-to-fllght. Wlth the

incorporation of several design changes In the Phase II

turbopump, rotordynamlc stability of the pumps has been

enhanced, but the durability and life of the LOX-cooled

bearings has decreased. During the post-Challenger SSME

recertificatlon, the MSFC bearing team investigated the causes

of limited bearing durability. One topic addressed by this

team was the flow environment upstream of the pump-end bearing
and the effect of seal exit swirl (Phase I labyrinth seal vs.

Phase II damping seal) and a cavity antl-vortex rib on the

bearlng environment and llfe. The objective of the present

work was to define the hydrodynamic environment upstream of the

pump-end bearing and determine the effect of seal exlt swirl

and the antl-vortex rib on bearing lnlet swirl.

The problem was posed as an axlsymmetrlc cavity flow with the

computational domain extending from the seal exit to the
bearing inlet. This domain was discretlzed with 22800 grld

points. Boundary conditions were obtained from a I-D model of

the SSME coolant path. These resulted in an axial Reynolds

number of 297000 and with a seal tip speed of 29,200 rpm. The

inlet Mach number was 0.19 and the problem was solved with the

CMINT code utilizing the Brl!ey-McDonald/Beam-Warming algorithm

with preconditioning to speed convergence at low Mach numbers.
Three parametric cases wlth inlet swirl of 50% shaft speed

(labyrinth seal), 20% shaft speed (damping seal) and no inlet

swirl were considered. Total CPU tlme for all analyses was 9

hours on a Cray X-MP with memory requirements of 1.7 million
words.

Computational results indicate large vortical flow structures

In the cavity, wlth the labyrinth, damping, and no-swirl cases

yielding bearing inlet swirl rates of 14, I0, and 9 percent of

shaft speed, respectively. These small differences are due to

fluid spln-up on the shaft and inner race and indicate that

upstream influences (either inlet swirl or antl-vortex ribs)

have little effect on bearing inlet conditions. When these

results were used as input to the SHABRETH bearing model,

limited durability could not be explained by these small

differences In swirl. Also, based on these results, a proposed
design change for the cavity antl-vortex rlb was not

implemented by the SSME chief engineer.
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N91-I0878

A COMBINED EULERIAN-LAGRANGIAN TWO-PHASE
ANALYSIS OF THE SSME HPOTP NOZZLE

PLUG TRAJECTORIES

R. Garcia, P. K. McConnaughey, NASA/MSFC

F. de Jong, J. Sabnis, Scientific Research Associates

D. Pribik, Rocketdyne Division, Rockwell International

Abstract

As a result of high cycle fatigue, hydrogen embrittlement,

and extended engine use, it was observed in testing that the

trailing edge on the first stage nozzle plug in the High

Pressure Oxygen Turbopump (HPOTP) could detach. The

objective of this study was to predict the trajectories
followed by particles exiting the turbine. Experiments had

shown that the heat exchanger coils, which lie downstream of

the turbine, would be ruptured by particles traveling in the

order of 360 ft/sec. An axisymmetric solution of the flow
was obtained from the work of Linet al [i] who used INS3D to

obtain his solution. The particle trajectories were obtained

using the method of de Jong et al [2] which employs

Lagrangian tracking of the particle through the Eulerian flow

field. The collision parameters were obtained from
experiments conducted by Rocketdyne using problem specific

alloys, speeds, and projectile geometries. A complete 3-D

analysis using the most likely collision parameters shows

maximum particle velocities of 200 ft/sec, in the heat

exchanger region. Subsequent to this analysis, an engine
level test was conducted in which seven particles passed

through the turbine but no damage was observed on the heat

exchanger coils.

References

i) Lin, S.-J. and Chang, J.L.C.: "Numerical Study of Laminar
and Turbulent Flow Inside a Turnaround Duct With and Without

Guide Vanes," AIAA Paper 87-0365, 1987.

2) de Jong, F.J., Sabnis, J.S., and McConnaughey, P.K.: "A

Combined Eulerlan-Lagrangian Two-Phase Flow Analysis of SSME

HPOTP Nozzle Plug Trajectories; Part I- Methodology," To be
presented at the AIAA Joint Propulsion Conference, 1989.
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N91-10879

Conjugate (Solid/Fluid) Computational Fluid Dynamics

Analysis of the Space Shuttle Solid Rocket Motor
Nozzle/Case and Case Field Joints

D. Doran, NASA/MSFC, L. W. Keeton, P. J. Dionne,

and A. K. Singhal, CFD Research Corporation

This work describes three-dimensional, conjugate

(solid/fluid) heat transfer analyses of new designs of the
Solid Rocket Hotor (SRH) nozzle/case and case field Joints.

The main focus of the study has been to predict the
consequences of multiple "rips" (or debonds) in the ambient

cure adhesive packed between the nozzle/case Joint surfaces

and the bond line between the mating field Joint surfaces.
The models calculate the transient temperature responses of

the various materials neighboring postulated flow/leakpaths

into, past and out from the nozzle/case primary O-ring cavity

and case field capture O-ring cavity. These results were

used to assess if the design was failsafe (i.e. no potential
O-ring erosion) and reusable (i.e. no excessive steel

temperatures).

The models are adaptions and extensions of the general

purpose PHOENICS fluid dynamics code.

A non-orthogonal coordinate system was employed and 11,592

control cells for the nozzle/case and 20,088 for the case

field joints are used with non-uniform distribution.

Physical properties of both fluid and solids are temperature

dependent.

A number of parametric studies were run for both joints with

results showing temperature limits for reuse for the steel

case on the nozzle joint being exceeded while the steel case

temperatures for the field Joint were not. O-ring

temperatures for the nozzle Joint predicted erosion while for

the field joint they did not.
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N91-10880

SIMULATION OF TURBOMACHINERYFLOWS

by

John J. Adamczyk
NASA Lewis Research Center

ABSTRACT

Significant advancements have been made in the last five years in the abil-

ity to model turbomachinery flows of engineering interest. This advance-

ment can be directly attributed to the second generation of supercomputers

like the Cray XMP and Cray II and advanced instrumentation techniques.

Early on, the National Aeronautics and Space Administration Lewis Research

Center recognized the potential gains in turbomachinery performance and

life that could be achieved by taking advantage of this technology and

instituted a comprehensive research program in turbomachinery flow model-

ing. This activity combined the areas of fluid flow analysis, computa-

tional fluid dynamics, and experimental fluid mechanics. As a result of

this activity, Lewis has become an internationaliy recognized leader in

turbomachinery flow modeling. Many of the research activities conducted

under this progam have been utilized by industry. The presentation will

give an overview of this program and provide sample illustration of simu-

lation performed to date.
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N91-10881

PREDICTION OF TURBINE ROTOR-STATOR INTERACTION

USING NAVIER-STOKES METHODS

N. K. Madavan and M. M. Rai

NASA Ames Research Center

MoffettField,CA 94035

and

S. Gavali

Amdahl Corporation

Sunnyvale, CA 94088

Abstract

Flows in turbomachinery are generally complex and do not easily lend themselves to

numerical computation. The flows are three-dimensional and inherently unsteady. The
unsteadiness arises from the interaction of the downstream airfoils with the wakes and

passage vortices generated upstream, from the motion of the rotors relative to the stators

and from vortex shedding at blunt airfoil trailing edges. Complicated blade geometries and
flow phenomena such as separation and periodic transition from laminar to turbulent flow

add to the numerical complexity. Nevertheless, the accurate numerical analysis of such

flows is a problem of considerable interest and practical importance to the turbomachinery

community.

Much of the early work in turbomachinery flow prediction focussed on airfoil cascades.

While such analyses of flows in isolated airfoil rows have helped improve our understanding

of the flow phenomena and have gained widespread acceptance in the industrial community

as a design tool, they do not yield any information regarding the unsteady effects arising

out of rotor-stator aerodynamic interaction. These interaction effects become increasingly

important as the distance between successive stator and rotor rows is decreased. Thus,

the need exists for analytical tools that treat the rotor and stator airfoils as a system and
provide information regarding the magnitude and the impact of the unsteady effects.

The focus of this presentation is a three-dimensional, time-accurate, thin-layer Navier-

Stokes code that has been recently developed to study rotor-stator interaction problems. A

system of patched and overlaid grids that move relative to each other is used to discretize

the flow field and the governing equations are integrated using a third-order upwind scheme
set in an iterative, implicit framework. The code has been used to simulate subsonic flow

through an axial turbine configuration for which considerable experimental data exists.

Grid refinement studies have also been conducted as part of the code validation process.

The current status of the research, along with planned future directions, are also discussed.
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N91-10582

Turbine Stage Aerodynamics
And Heat Transfer Prediction

L. W. Griffin and H. V. McConnaughey

NASA/MSFC

A numerical study of the aerodynamic and thermal environment
associated with axial turbine stages is presented.

Computations were performed using a modification of the
unsteady NASA Ames viscous code, ROTOR1, and an improved

version of the NASA Lewis steady invlscld cascade system

MERIDL-TSONIC coupled with boundary layer codes BLAYER and

STAN5. Two different turbine stages were analyzed: the

first stage of the United Technologies Research Center Large

Scale Rotating Rig (LSRR) and the first stage of the Space

Shuttle Main Engine (SSME) high pressure fuel turbopump

turbine. The tlme-averaged airfoil mldspan pressure and heat

transfer profiles were predicted for numerous thermal

boundary conditions including adiabatic wall, prescribed

surface temperature, and prescribed heat flux. Computed
solutions are compared with each other and with experimental
data in the case of the LSRR calculations. Modified ROTOR1

predictions of unsteady pressure envelopes and instantaneous
contour plots are also presented for the SSME geometry.

Relative merits of the two computational approaches are
discussed.
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N(Jl-10884

Numerical _nalysis of Flow Through Oscillating
Cascade Bsctions

by Dennis L. Huff

NASA Lewis Research Center

The design of turbomachinery blades requires the prevention

of flutter for all operating conditions. However, flow field

predictions used for aeroelastic analysis are not well understood

for all flow regimes. The present research focuses on numerical

solutions of the Euler and Navier-Stokes equations using an ADI

procedure to model two-dimensional, transonic flow through

oscillating cascades. The model prescribes harmonic pitching

motions for the blade sections for both zero and non-zero

inter-blade phase angles. The code introduces the use of a

deforming grid technique for convenient specification of the

periodic boundary conditions. Approximate nonreflecting boundary

conditions have been coded for the inlet and exit boundary

conditions. Sample unsteady solutions have been performed for an

oscillating cascade and compared to experimental data. Also,

test cases were run for a flat plate cascade to compare with an

unsteady, small-perturbation, subsonic analysis.

The predictions for oscillating cascades with non-zero

inter-blade phase angles are in good agreement with experimental

data and small-perturbation theory. The zero degree inter-blade

phase angle cases, which were near a resonant condition, differ

from the experiment and theory. Studies on reflecting versus

non-reflecting inlet and exit boundary conditions show that the

treatment of the boundary can have a significant effect on the

first harmonic, unsteady pressure distributions for certain flow

conditions. This code is expected to be used as a tool for

reviewing simpler models that do not include the full non-linear

aerodynamics or as a final check for designs against flutter in

turbomachinery.
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N91-10885

ANALYSIS OF THREE-DIMENSIONAL VISCOUS FLOW
IN A SUPERSONIC THROUGHFLOW FAN

by

Dr. Rodrick V. Chima
NASA Lewis Research Center

Cleveland, OH 44135

Abstract

A three-dimensional Navier-Stokes code has been developed for analysis of turboma-

chinery blade rows and other internal flows. The Navier-Stokes equations are written in
a Cartesian coordinate system rotating about the x-axis, and then mapped to a general
body-fitted coordinate system. Streamwise viscous terms are neglected using the thin-
layer assumption, and turbulence effects are modelled using the Baldwin-Lomax turbu-
lence model. The equations are discretized using finite differences on stacked C-type grids
and are solved using a multistage Runge-Kutta algorithm with a spatially-varying time
step and implicit residual smoothing.

Calculations were made of the flow around a supersonic throughflow fan blade. The
fan was designed at NASA Lewis Research Center as a key component in a supersonic
cruise engine. It was designed to produce a total pressure ratio of 2.7 at an axial Mach
number of 2.0. The midspan section of the blade is being tested in a supersonic linear
cascade at Virginia Polytechnic Institute and will be tested in a rotating rig at Lewis in
the near future. Comparisons between earlier quasi-3-D calculations and the VPI data
show excellent agreement between shock locations and wake traverses.

The 3-D calculations were done on a 129 * 29 * 33 grid and took 50 minutes of cpu
time on a Cray X-MP. Comparisons with the quasi-3-D results show minor differences in
loading due to 3-D effects. Particle traces show nearly 2-D flows near the pressure surface,

but large secondary flows within the suction surface boundary layer. The horseshoe vortex
ahead of the leading edge is clearly seen.

References

1. Chima, R. V., and Yokota, J. W. _Numerical Analysis of Three- Dimensional Viscous
Internal Flows, _ NASA TM-100878, July, 1988.

2. Schmidt, J. F., Moore, R. D., and Wood, J. R. "Supersonic Throughflow Fan Design,"
NASA TM-88908, AIAA-87-1746, June, 1987.
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N91-1oss6

SIMULATION OF POWERED-LIFT FLOWS

William R. Van Dalsem

Kalpana Chawla
Karlin R. Roth

Merritt 1t. Smith

Kuditipudi V. Rao

NASA Ames Research Center, Moffett Field, CA

Thomas C. Blum

BOEING Advanced Systems, Seattle, WA

The primary objective of this presentation is to expose government, industry, and
academic scientists to work underway at NASA-Ames towards the application of CFD to

the powered lift area. One goal of our research is to produce the technologies which will be

required in the application of numerical techniques to, for example, the Supersonic STOVL

program.
In the presentation, we will summarize our progress to date on the following specific

projects:

Jet in ground effect with crossflow

Jet in a crossflow

Delta planform with multiple jets in ground effect

Integration of CFD with thermal and acoustic analyses

Improved flow visualization techniques for unsteady flows

YAV-8B Harrier simulation program

E-7 simulation program

Additional work is underway at NASA-Ames in the development of turbulence models and

solution adaptive grid techniques suitable for the powered lift area, and the simulation of

USB configurations. However, this work is not included here due to space constraints.
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N91-I0887

A Numerical Study of the Hot Gas Environment

Around a STOVL Aircraft in Ground Proximity

by

Thomas J. VanOverbeke

and

James D. Holdeman

of

NASA Lewis Research Center

ABSTRACT

The development of Short Take-off Vertical Landing (STOVL) aircraft

has been based on empiricism. In this study, a 3-D flow code was used to

calculate the hot gas environment around a STOVL aircraft in ground

proximity. Preliminary calculations are reported to identify key

features of the flowfield, and to demonstrate the capability of a CFD

code to calculate the temperature of the gases ingested at the engine

inlet for typical flow and geometric conditions.
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N91-10888

CFD ANALYSIS FOR HIGH SPEED INLETS

Tom Benson

NASA Lewis Research Center

ABSTRACT

The increased national interest in high speed flight has increased research for

high speed propulsion components. The highly three-dimensional flows present in

supersonic/hypersonic inlets are currently being studied at NASA Lewis both

experimentally and computationally using a family of steady PNS and NS solvers

and unsteady NS solvers. This paper presents some of the results of these efforts

with an emphasis on the comparison of the computational and experimental

results.

The flow in high speed inlets typically involves the interaction of compression

shock waves and boundary layers on the intemal surfaces. The fundamentals of

these interactions have been studied experimentally for many years, while more

recently, computations have been used to study these complex three dimensional

flow fields. Attempts to control the flow through boundary layer bleed are being

investigated computationaUy prior to wind tunnel experiments. The ultimate goal

of this research will be the higher performing inlets required for high speed flight.
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COLORILLUSTRATIONS

1 91-10889

THE USE OF A NAVI]_-STOKES CODE IN THE g][NC DESIC_ ][:_DCESS

S. Naomi McMillin

NASA Langley Research Center

Hampton, Virginia 23665-5225

Abstract of Paper Presented at the

NASA Computational Fluid Dynamics Conference
NASA Ames Research Center

March 6-9, 1989

An ongoing investigation is being conducted in the Supersonic/Hypersonic

Aerodynamics Branch at NASA Langley Research Center to determine the

feasibility of incorporating the Navier-Stokes computational code, CFL3D, into

the supersonic wing design process. The approach taken in this investigation

is of two steps.

The first step was to calibrate CFL3D against existing experimental data

sets obtained on thin sharp-edged delta wings. The experimental data

identified six flow types which are dependent on the similarity parameters of

Mach number and angle of attack normal to the leading edge. The calibration

showed CFL3D capable of simulating these various separated and attached-flow
conditions.

The second step was to use CFL3D to study the initial formation of

leading-edge separation over delta wings at supersonic speeds. This study

consisted of examining solutions obtained on a 65 ° delta wing at Mach number

of 1.6 with varying cross-sectional shapes. Reynolds number was held constant

at I000000 and the Baldwin-Lomax turbulence model was used. The study showed

that through the use of leading-edge radius and/or camber, the onset of

leading-edge separation can be delayed to a higher angle of attack than

observed on a flat sharp-edged wing.

Based on the geometries studied, three wind-tunnel models are being

designed to verify these results. These models a_e to be tested over a
Reynolds number range of 2 x 10V/foot to 8.5 x 10V/foot.
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Fig. I

Fig. 2

Fig. 3

Fig. 4

Fig, 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. I0

Fig, ii

Fig. 12

Fig. 13

The objective and approach for the present investigation.

CFL3D code characteristics.

Sketches of the wind-tunnel models tested by Miller and Wood in the

Langley Unitary Plan Wind Tunnel (NASA TP-2430).

The types of flow classified from the Miller and Wood experimental

test (NASA TP-2430).

The computational test matrix at M = 2.8 superimposed on the chart

which defines the flow types as functions of _ and M normal to the

leading edge.

A comparison of computational results with experimental data for the

75 ° delta wing at _ = 8 ° and M - 2.80 (AIAA 87-2270).

The major elements of the incipient separation study (second step of

approach).

Computational results which quantify the effects of leading-edge
radius at _ = 4 ° .

Computational results which quantify the effects of leading-edge
radius at _ = 8° .

Computational results which quantify the effects of camber at _ = 8° .

A summary on the effects of leading-edge radius and camber on a 65 °

delta wing at M = 1.6.

Major element of proposed wind-tunnel test.

Concluding remarks.
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N91-10890

APPLICATIONS OF A TRANSONIC WING DESIGN METHOD

by

Richard L. Campbell and Leigh A. Smith

NASA Langley Research Center

ABSTRACT

The development of transonic computational fluid dynamic methods

over the last fifteen years has had a tremendous impact on the design

of airfoils and wings. A variety of approaches to automated design

have been developed, such as the hodograph and fictitious gas methods

for shock-free design, and inverse, numerical optimization, and

predictor/corrector methods for the more general cases. Each of these

techniques has advantages as well as limitations, and the designer

must choose the one that best suits his specific task.

A method for designing wings and airfoils at transonic speeds

using a predictor/corrector approach has been developed. The pro-

cedure iterates between an aerodynamic code, which predicts the flow

about a given geometry, and the design module, which compares the cal-

culated and target pressure distributions and modifies the geometry

using an algorithm that relates differences in pressure to a change in

surface curvature. The modular nature of the design method makes it

relatively simple to couple it to any analysis method. The iterative

approach allows the design process and aerodynamic analysis to con-

verge in parallel, significantly reducing the time required to reach a

final design. Viscous and static aeroelastic effects can also be

accounted for during the design or as a post-design correction.

Results from several pilot design codes indicated that the method

accurately reproduced pressure distributions as well as the coordi-

nates of a given airfoil or wing by modifying an initial contour. The

codes were applied to supercritical as well as conventional airfoils,

forward- and aft-swept transport wings, and moderate-to-highly swept

fighter wings. The design method was found to be robust and effi-

cient, even for cases having fairly strong shocks. Comments from a

user in industry indicated that for a specific design problem, this

design method was about 25 times faster than a numerical optimization

approach that utilized the same aerodynamic analysis code.
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N91-10892

Unstructured Mesh Solution

of the Euler and Navier-Stokes Equations

Timothy J. Barth

CFD Branch

NASA Ames Research Center

Moffett Field, CA 94035

Mesh generation procedures as well as solution algorithms for solving

the Euler and Navier-Stokes equations on unstructured meshes are pre-

sented. The solution algorithms discussed utilize approximate Riemann

solver, upwind differencing to achieve high spatial accuracy. Numerical

results for Euler flow over single and multi-element airfoils axe presented.
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Fig. 2.1s) Three-component configuration. Fig. 2.1b) Grid about main element.

Fig. 2.1c) Grids plotted atop one another. Fig. 2.1d) Grid after elimination of unwanted pts.

Fig. 2.1e) Grid after reconnection of points. Fig. 2.If) Grid after reconnection, detail.

Figure (2.1) Mesh generation synthesis of 3 element airfoil.
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N91"lOs9a

3-D UNSTRUCTURED GRIDS
FOR THE SOLUTION OF
THE EULER EQUATIONS
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NASA Langley Research Center

P. Parikh, S. Pirzadeh

Vigyan Research Associates

R. L6hner

George Washington University
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Advancing Front Grid Generator
The advancing front technique is being used to develop a code

to generate grids around complex three dimensional configurations for

use in computing the invisid flow solutions by the Euler equations. By

the advancing front technique points are introduced concurrently with

the connectivity information so that a separate library is not required.

The generation of a 3-D grid is accomplished in several steps. First

the boundaries of the domain to be gridded must be described by

two-, three- or four-sided surface patches. Next, a background mesh

is required to control the grid spacing and stretching throughout the

domain. This coarse tetrahedral grid is not required to conform to

any of the boundaries. Next, each of the patches is mapped to 2-D,

triangulated by the advancing front technique and mapped back to

3-D. These triangles form the initial front for the generation of the

final tetrahedral mesh.
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Advancing Front in 2-D

The figure is a schematic showing the advancing front technique

in 2-D. The initial front is a set of line segments called faces. In 3-D

a face is a triangle. In succession, each face of the front is deleted

and a new point in the field is introduced. As in the center figure, if

the new point is close to an existing point, then the existing one is

used instead. The front advances until it closes in on itself at which

point the region is fully gridded.
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Surface Grid for F-18 Configuration

The figure shows the surface grid for an F-18 fighter configuration.

The grid was generated for only one half of the configuration but

it has been mirrored in the picture. The grid consists of 367,000

tetrahedrons using nearly 66,000 points of which 10,000 lie on the 75

surface patches defining the airplane and the computational box. It

required about 400 seconds on the NAS CRAY-2 computer.
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Finite Element Flow Solver
The flow solver developed in conjunction with the grid generator

uses a two-step Taylor Galerkin finite element method for the Eu-

ler equations cast in Arbitrary Lagrangian-Eulerian (ALE) form. The

Galerkin weighted residual method is used to perform the spatial dis-

cretization. "ltmestepping options are available for steady-state or tran-

sient problems. Accurate solutions without spurious over/undershoots

can be obtainedusing Flux Corrected Transport(FCT) techniques.

Second orderpressureor Lapidus damping isused nearshocks.Adap-

tivemesh refinement is used to better capture sharp gradients. This

technique has not been fully implemented in 3-D.
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FINITE ELEMENT FLOW SOLVER

• Two-step Taylor-Galerkin scheme

° Spatial discretization performed
via Galerkin weighted residual
method using linear elements

• Options for:

Global/local timestepping

Second order pressure or Lapidus damping

Flux Corrected Transport (FCT)

Adaptive H-refinement

4O4



Results In 2-D
As a means of determining the accuracy of this code, results

are presented for two 2-D flow calculations. The first case is the

transonic flow calculation for an NACA 0012 airfoil at Moo = .80

and c_ = 1.25 °. Comparison is made with results from FLO52, a

finite volume method calculated on an O-type grid.

The second case is the flow field around a 20 ° ramp at Moo = 3.0.

The exact solution is known and can be compared. This case also

illustrates the use of adaptive mesh refinement.

405



RESULTS IN 2-D

• Comparison of NACA 0012 airfoil

at M_ -.80, c_= 1.25 °

FEFLO27 ( unstructured mesh, Finite

Element solver)

FLO52 (O-grid, finite volume method)

• 20 ° ramp flow

at M_¢ = 3.0

adaptive mesh refinement
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Grid for NACA 0012 Airfoil

The figure shows the unstructured grid used for the calculation.

There are nearly 5000 points in the grid of which 266 points lie on

the airfoil surface. This is similar to the 193 points in the structured

grid of FLO52.
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Pressure Coefficient Comparison
for NACA 0012 Airfoil

The pressure coefficient distributions are compared in the figure.

The results of the calculation made on the structured grid are des-

ignated by diamonds connected by straight lines. The results of the

calculation on the unstructured grid are designated by filled circles.

The solutions are very similar. The location and strength of the nor-

mal shock on the upper surface are nearly identical. The finite ele-

ment solver captured the shock more sharply than did FLO52. The

finite element solution shown was obtained in 4000 steps which used

1.9 x 10 -a seconds/point/timestep on a Convex C2 computer.
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Exact Solution For Supersonic
Flow Over A Ramp

This figure shows a schematic of the second case, supersonic flow

over a 20 ° wedge. The exact solution is shown for the regions

designated 1, 2, and 3.
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Grid Adaptation for 20 ° Ramp
This figure shows the final adapted grid for the solution. The levels

of adaptation are shown by different colors.
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Mach Number and Pressure

Contours for 20 ° Ramp
The calculated Mach number and pressure are shown in the fol-

lowing figures. The shock angle and the conditions in the regions

designated I, 2, and 3 are predicted accurately. The figure also shows

the interaction of the oblique shock with the expansion fan and the

reflection of the shock off the straight wall.
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Surface Pressure
Contours on F-18 Aircraft

The figure shows the pressure contours on the surface of an F-

18 aircraft configuration at Moo = 0.3 and a = 15 °. The solution

was calculated on a grid for which the engine inlet and nozzle were

blocked. This solution was run 600 iterations in 159 minutes on the

NAS CRAY-2 computer to decrease the maximum residual by two

orders of magnitude.





427

'_" :'+i;_! ,,++ l-_&_',_._, ; _





Pressure Contours For Shock
Emanating From A Corner

Sharp gradients in density and pressure were imposed at the in-

tersection of three perpendicular walls as the initial conditions for a

transient flow calculation. The figures show the pressure contours on

the walls at two different time steps. The grid on the three walls is

also shown. Additional grid points were added during the calculation

to better capture the sharp gradients. No derefmement was done after

the large gradients had passed.
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Future Plans

Further development of the grid generator will tend along three

paths: (1) implementation of existing CAD sytem for faster and easier

surface definition, (2) enhancement of the surface element library to

allow slope continuity across surface patch boundaries and (3) faster

and better ways of defining the background grid.

Further development of the flow solver is expected to involve

incorporation of the viscous terms into the flow equations, use of

implicit or semi-implicit algoriths and implementation on parallel

computers.
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N91-10895

Visualization of Fluid Dynamics at NASA Ames

Val Watson

NASA Ames Research Center

The hardware and software currently used for visualization of fluid dynamics at

NASA Ames is described. The software includes programs to create scenes (for

example particle traces representing the flow over an aircraft), programs to

interactively view the scenes, and programs to control the creation of video tapes

and 16mm movies. The hardware includes high performance graphics

workstations, a high speed network, digital video equipment, and film recorders.

With the current workstations, a scientist can interactively view flow over

simplified objects, such as the flow over a circular cylinder. For complex objects,

such as an aircraft, the workstation creates each picture too slowly to gain a sense of

the dynamics of the flow. Therefore, each picture is stored frame by frame on a

video tape or 16mm film and then the video or movie is played back at normal

speed to illustrate the flow dynamics.

The upgrade in workstations planned for this year is expected to permit moderately

complex pictures (pictures that can be represented by 10,000 polygons or less) to be

created at a rate of 10 frames per second --- fast enough to gain a sense of the flow

dynamics. Therefore, these workstations should permit interactive viewing of the

flow over complete aircraft rather than just simple objects. Upgrades planned this

year for software should provide a more effective interface for controlling the

interactive viewing.

A comparison of the upgrades planned this year with an ideal simulation and

visualization environment shows that there is still potential for major

improvements in both software and hardware. The greatest potential for

improving the environment is the development of software to extract and illustrate

the essence of very complex phenomena.

Results presented by other scientists during this conference clearly demonstrate the

effectiveness of the current visualization tools for assisting in the understanding of

complex simulations, but it is also clear that we are a long way from utilizing
visualization tools to their full extent.
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N91-10896

COMPUTATIONAL FLUID DYNAMICS ON A

MASSIVELY PARALLEL COMPUTER

Dennis Jespersen, CFD Branch, NASA/Ames
and

Creon Levit, NAS Applied Research Branch, NASA/Ames

Abstract. We have implemented a finite-difference code for the compressible

Navier-Stokes equations on the Connection Machine, a massively parallel computer.

The code is based on the ARC2D/ARC3D program and uses the implicit factored

algorithm of Beam and Warming. The code uses odd-even elimination to solve

linear systems. We give timings and computation rates for the code, and compare
with a Cray XMP.
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N91?-10897

Conservation Equations and Physical Models for Hypersonic Air

Flows Over the Aeroassist Flight Experiment Vehicle

PeterA. Gnoffo

NASA Langley Research Center

Hampton, VA 23665

Mail Stop 366

Abstract

The code development and application program for the Langley Aerothermodynamic

Upwind Relaxation Algorithm (LAURA), with emphasis directed toward support of the

Aeroassist Flight Experiment (AFE) in the near term and Aeroassisted Space Transfer Vehicle

(ASTV) design in the long term is reviewed. LAURA is an upwind-biased, point-implicit

relaxation algorithm for obtaining the numerical solution to the governing equations for three.

dimensional, viscous, hypersonic flows in chemical and thermal nonequilibrium. The algorithm

is derived using a finite-volume formulation in which the inviscid components of flux across

ceU wails are described with Roe's averaging and Harten's entropy fix with second-order correc-

tions based on Yee's Symmetric Total Variation Diminishing scheme. Because of the point-

implicit relaxation strategy, the algorithm remains stable at large Courant numbers without the

necessity of solving large, block tri-diagonal systems. A single relaxation step ctepends only on

information from nearest neighbors. Predictions for pressure distributions, surface heating, and

aerodynamic coefficients compare well with experimental data for Mach I0 flow over an AbE
wind tunnel model. Predictions for the hypersonic flow of air in chemical and thermal none-

quil_rium (velocity = 8917 m/s, altitude = 78 kin.) over the full scale AbE configuration

obtained on a multi-domain grid are discussed.
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Ngl-/0898

THE COMPUTATION OF THERMO-CHEMICAL

NONEQUILIBRIUM HYPERSONIC FLOWS

Graham Candler

Aerothermodynamics Branch

MS 230-2, 415-694-4227

NASA Ames Research Center

Moffett Field, CA 94035

Several conceptual designs for vehicles that would fly in the atmosphere at hypersonic speeds

have been developed recently. For the proposed flight conditions the air in the shock layer that

envelops the body is at a sufficiently high temperature to cause chemical reaction, vibrational ex-

citation, and ionization. However, these processes occur at finite rates which, when coupled with

large convection speeds, cause the gas to be removed from thermo-chemical equilibrium. This non-

ideal behavior affects the aerothermal loading on the vehicle and has ramifications in its design.

A numerical method to solve the equations that describe these types of flows in two dimen-

sions has been developed. The state of the gas is represented with seven chemical species, a sepa-

rate vibrational temperature for each diatomic species, an electron translational temperature, and a

mass-averaged translational-rotational temperature for the heavy-particles. The equations for this

gas model are solved numerically in a fully coupled fashion using an implicit finite volume time-

marching technique. Gauss-Seidel line-relaxation is used to reduce the cost of the solution and

flux-dependent differencing is employed to maintain stability.

The numerical method has been tested against several experiments. The calculated bow shock

wave detachment on a sphere and two cones was compared to those measured in ground testing

facilities. The computed peak electron number density on a sphere-cone was compared to that

measured in a flight test. In each case the results from the numerical method were in excellent

agreement with experiment. The technique has been used to predict the aerothermal loads on an

Aeroassisted Orbital Transfer Vehicle including radiative heating. These results indicate that the

current physical model of high temperature air is appropriate and that the numerical algorithm is

capable of treating this class of flows.
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Results- Axisymmetric AOTV

Shadowgraph of an axisymmetric AOTV model in air.

u_o = 4.02kin/s, A4oo = ll.6, Re = 343000, _ = 180.

- 6 temperature model

experiment (Intrieri & Kirk)
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'Results - Cylinder

Q Interferogram of 2 inch diameter cylinder in N2 and N.

u_ = 5.59kin/s, A4_ = 6.1,Re = 12000, ¢ = 5.5.

experiment (Hornung)

multi-temperature model
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N91-10899

Aerodynamic Stability and Heating Analyses for the Aeroassist Flight Experiment
Vehicle

J. McGary and C. P. Li
Lockheed Engineering and Science Company, Houston, Tx 77058

Johnson Space Center, Houston, Tx 77058
FTS 525-4684

Since ground based flow simulations are presently unable to model flight conditions expected
for AOTVs (Aeroassist Orbital Transfer Vehicle) and other hypersonic space vehicles, computer
codes are being developed to provide design parameters necessary for structure, guidance, and
control aspects. Over the past four years, VRFLO (Viscous Reactive Flow) has been written to
model finite-rate chemistry and viscous effects for a variety of aerobrake bodies. VRFLO includes
a number of unique features that are summarized as follows:

1. Grid generation is an integral part of the code for several aerobrake configurations which
includes the wake flow region.

2. The formulation is valid for three air chemical models.
3. An ADI central difference technique is used to solve the Navier-Stokes and species

continuity equations in split groups.
4. Grid density and numerical damping are minimized by shock-fitting and conformal

mapping of body points.

Currently, the AFE (Aeroassist Flight Experiment) project requires critical input parameters for
the design development, and to aid its progress, aerodynamic forces and heating rates are
calculated at a specified trajectory point of maximum heating. The code was calibrated against
Mach 10 measurements taken at the Langley Continuous-Flow Hypersonic Tunnel to determine
grid sensitivity and reliability estimates for flight calculations. Aerodynamic forces and moment
coefficients (lifts, drags, and pitching moments) were calculated at five angles of attack to
determine the basic coefficient behavior as a function of angle for stability analysis. Wind tunnel
simulations were modeled by calculating the flowfield about the complete body assuming an
inviscid, perfect gas which resolved the non-linear behavior in the pitching moment measured from
wind tunnel experiments. Inviscid, reacting air calculations, for flight conditions at Mach 32,
show a linear pitching moment that agrees with calculations performed at Langley Research Center
which considered inviscid, equilibrium air with forebody geometry. Preliminary, not fully
converged, viscous, reacting flow calculations at the same flight conditions reveal a slight non-
linear relation between pitching moment and angle of attack. In each case, the base pressure
contributions are examined by considering the forebody and complete body separately.

Considering that heat-transfer measurements are accurate within +7% and an equal amount of
uncertainty is associated with CFD results, the convective heat flux calculations are in fairly good
agreement with the Langley Mach 10 wind tunnel measurements. While the calculated surface
pressure distribution demonstrates excellent agreement with measurement, the heat-transfer
coefficient exhibits similar surface behavior to the data but varies in value. Incident angle studies
show that the maximum heating decreases with increasing attack angle without modifying the
overall distribution shape. Calculations for flight conditions show similar trends observed from
wind tunnel simulations but have a more pronounced peak at the stagnation region. Fully catalytic
calculations indicate that the heat-transfer coefficients are about 25% larger in general than those in
the non-catalytic solutions; the actual fluxes expected for flight conditions will be bounded by the
two extremes.
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N9!-10900

AEROASSIST FLIGHT EXPERIMENT AERODYNAMICS

AND AEROTHERMODYNAMICS

Edwin B. Brewer, NASA/MSFC

Abstract

The problem is to determine the transitional flow aero-

dynamics and aerothermodynamics, including he base flow

characteristics, of the Aeroassist Flight Experiment (AFE).

The justification for the CFD Application stems from MSFC's

system integration responsibility for the AFE. To insure

that the AFE objectives are met, MSFC must understand the

limitations and uncertainties of the design data.

Perhaps the only method capable of handling the complex

physics of the rarefied high energy AFE trajectory is Bird's

Direct Simulation Monte Carlo (DSMC) technique. The three-

dimensional code used in this analysis is applicable only to

the AFE geometry. It uses the Variable Hard Sphere (VHS)

collision model and five specie chemistry model available

from Langley Research Center.

The code will be benchmarked against the AFE flight data

and used as an Aeroassisted Space Transfer Vechicle (ASTV)

design tool. Meanwhile, the code is being used to understand

the AFE flow field and verify or modify existing design data.

Continued application to lower altitudes is testing the

capability of the Numerical Aerodynamaic Simulation Facility

(NASF) to handle three-dimensional DSMC and its practicality
as an ASTV/AFE design tool.
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N91-10901

DIRECT SIMULATION OF RAREFIED HYPERSONIC FLOWS

James N. Moss

NASA Langley Research Center

Hampton, Virginia 23665-5225

As the capability of the space transportation vehicles (STY's) expand to

meet the requirements for future space exploration and utilization, the

effects of rarefied hypersonic flows will play a more significant role in

defining the aerodynamic and aerothermodynamic performance of STV's. This is

particularly true of the low lift/drag aeroassisted STV's where aerobraking

occurs at relatively high altitudes and high velocity. Because of the

limitations of the continuum description as. expressed by the Navier-Stokes

equations and the difficulties of solving the Boltzmann equation, the

particle or molecular approach has been developed over the last three decades

for modeling rarefied gas effects. The direct simulation Monte Carlo (DSMC)

method of Bird is the most used method today for simulating rarefied flows.

The DSMC method provides a direct physical simulation as opposed to a

numerical solution of a set of model equations. This is accomplished by

developing phenomenological models of the relevant physical events. The DSMC

method accounts for translational, thermal, chemical, and radiative nonequi-

librium effects. The present discussion will review the general features of

the DSMC method, the numerical requirements for obtaining meaningful results,

the modeling used to simulate high temperature gas effects, and applications

of the method to calculate the flow about an aeroassist flight experiment

vehicle (AFE). The AFE simulates a geosynchronous return while entering the

Earth's upper atmosphere at approximately 10 km/s. Results obtained usin 8 a

general 3-D code are presented for the more rarefied portion of the

atmospheric encounter (altitudes of 200 to 100 km) emphasizing surface,

flowfield, and aerodynamic characteristics of the AFE. Finally, results

obtained using axisymmetric and I-D versions of the code are presented for

lower altitude conditions.
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